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REGULARIZATION AND THE GENERAL 
GAUSS-MARKOV LINEAR MODEL 

HONGYUAN ZHA AND PER CHRISTIAN HANSEN 

ABSTRACT. If the coefficient matrix in the general Gauss-Markov linear model 
is ill-conditioned, then the solution is very sensitive to perturbations. For such 
problems, we propose to add Tikhonov regularization to the model, and we 
show that this actually stabilizes the solution and decreases its variance. We 
also give a numerically stable algorithm for computing the regularized solution 
efficiently. 

1. INTRODUCTION 

This paper is concerned with the general Gauss-Markov linear model Ax+e = 

b, where A E Rmxn (m > n) and b E Dm are known, x E Rin is an unknown 
vector to be estimated, and e E Rm is a random vector with zero mean and 
variance-covariance matrix V(e) = s 2BBT with B E IRmxP (m > p) . The best 
linear unbiased estimator of x in this model is the solution to the following 
constrained least squares problem: 

(1) min lIu112 subject to Ax + Bu = b. 

Here, we have introduced the vector u E JRP such that e = Bu, where u has 

variance-covariance matrix V(u) = s2I and where I is the identity matrix. p p 
The model (1) was introduced by Paige [10], and computational algorithms can 
be found in [7, 9, 1 1]. A more detailed analysis of ( 1) in terms of the generalized 
SVD is also given by Paige [12], while Bj6rck [1, ?23] extended this analysis to 
the case when both A and B may be rank-deficient. However, the case when 
problem (1) is ill-conditioned, for example if A or B is ill-conditioned, has 
not been given much attention and, according to Paige [ 10], needs further work. 
The present paper is a step in this direction. 
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First, a word about our notation: II D II denotes the matrix and vector 2-norm, 
I is the identity matrix of order p, and A+ denotes the pseudoinverse of A. 

Let us consider the sensitivity of the solution to (1) to perturbations of the 
right-hand side b. Let e denote the perturbation, and let x denote the per- 
turbed solution. Then the following approximate error bound follows from [10, 
equation (46)]: 

(2) lix - ill c HA 11 (1 + JIB 1111 (QTB)+ 11) Dlell, 

where the columns of Q form an orthonormal basis for the null space of AT. 
We immediately see that if A is ill-conditioned, then x may be very sensitive 
to perturbations. This is also clear from the analysis in [12], since we can 
always expect difficulties when dividing by the small generalized singular values 
of (A, B) . Equation (2) shows that a large 11(QTB)+II also indicates trouble. 

In this paper we investigate the case where A is ill-conditioned while B is 
well-conditioned. To overcome the problems associated with the ill-conditioned 
A, we suggest adding Tikhonov regularization to problem (1) (Tikhonov reg- 
ularization is discussed, e.g., in [3; 1, ?26]). Thus, we propose the following 
regularized Gauss-Markov problem: 

(3) min{Hlull2 +) ACxII2} subjectto Ax+Bu=b. 

Here, for simplicity, we assume that B and C have full rank, 

(4a) A E R mXn B E Rm>XP C E Rqxn 

rank(B) = p < m, rank(C) = q < n < m. 

We also assume that 

(4b) rank 
A 

n' 

which guarantees that the regularized solution x. to (3) is unique for any A > 0 . 
Notice that we make no assumption about the rank of A, since this is not 
important in connection with Tikhonov regularization (cf., e.g., [4]). Typically, 
we will take C to be the identity matrix In or a well-conditioned discrete 
approximation to some derivative operator to ensure that the solution x. is 
sufficiently "smooth". The quantity A is the regularization parameter, which 
controls the weight given to minimization of IICxHI relative to minimization of 
Hull 

We know that the regularized solution x, to (3) is no longer an unbiased 
estimator (which is in fact the case for any regularized solution). However, 
inspired by the success of adding regularization to ill-conditioned least squares 
problems, we feel that xA has other nice properties (cf. ?3) that make it useful 
in connection with general Gauss-Markov linear models with ill-conditioned 
coefficient matrix A. 

The paper is organized as follows. In ?2 we introduce the restricted SVD 
and apply it as a tool for analyzing the model (3). In ?3 we use these results to 
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describe the properties of the regularized solution x.. In ?4 we briefly discuss 
the discrete Picard condition as it applies to the regularized problem (3). Finally, 
in ?5 we present a numerically stable algorithm for solving (3) efficiently. 

2. AN RSVD ANALYSIS OF THE REGULARIZED GAUSS-MARKOV PROBLEM 

We notice first that if p < m, then min{ lB+(Ax - b)H12 + A211Cx112} is not 
a valid formulation of (3), and we can therefore not base our analysis of (3) 
on Van Loan's S, T-singular values [13]. The proper tool to analyze (3) is the 
restricted SVD (RSVD) of (A, B, C) due to Zha [14]: 

Theorem 1. Let A, B, and C satisfy the assumptions in (4a) and (4b). Then 
there exist nonsingular matrices X E Rinxn and Z E mx m and orthogonal 
matrices U E RPXP and V E R'x' such that 

(5) Z TA X = X, ZTBU=M, V TCX=N, 

where X, M, and N are pseudodiagonal matrices with nonnegative elements 
having the following structure: 

I 0 0 O- S A 
o Ij 0 0 1 

Y = 0 0 Ik 0 k, 
o 0 0 I, 1 
0 0 0 0 u 

(6) -Is t k 

001 F 01 t 
M= 0 I k, N= [t I 

0 01 tj' 1i00 
O 0 u 
s k 

and where 

(6a) I;A= diag(xl, ...... 
, 
rr) E Rsxt, al...C 

> a2 > ... > Ur > 05 
r = minfs, t}. 

The dimensions of the submatrices are 

=rab+q-rabc k=n+p-rabc, l=rabc-p-q, 

S = rabc - n t = rabc - rab U =m - rabr 

where rab= rank(A, B) and rabc = rank(A c). 

Proof. The proof of the RSVD as well as the notation is from [14, Theorem 
4.2] with the simplifications imposed by our assumptions in (4a) and (4b). o 

Remark. In [5] it is shown that if A is ill-conditioned and C is well-condi- 
tioned, and if A = U1XX , C = VMX is the generalized SVD of (A, C), 
then I is ill-conditioned while M and X are well-conditioned. Using this 
result in the constructive proof for the RSVD [ 14], which consists of a sequence 
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of generalized SVD's, one can show that if A is ill-conditioned and both B 
and C are well-conditioned, then I is ill-conditioned while X and Z are 
well-conditioned. 

Inserting the RSVD into (3) and using the fact that the 2-norm is invari- 
ant under orthogonal transformations, we immediately obtain the equivalent 
problem 

(8) min{ 1u11 +AI gN-x } subject to I +Mi=b, 

where we have defined the transformed vectors U = UTu, x = X-1x, and 
b = Z Tb. At this point, it is convenient to partition the matrices X and Z 
columnwise and to partition the vectors x, U, and b elementwise according to 
the partitioning in (6), 

(9a) X =[XI, Xi I Xk, Xl], Z = K Zj, Zk ' Z1 Zu] 

b. 

(9b) = us b= bk 

The equality constraints in (8) then take the following simpler form: 

(10) zx~t + uS-bS Xk + Uk k 0=b 
= E 

We immediately see that consistency of the model (3), i.e., the requirement that 
the right-hand side b belongs to the range of the matrix (A, B), corresponds 
to requiring that bE = 0. Using the results in (10), the minimization problem 
in (8) can now be written as 

(11) min{ [b] [- ? Ik [X k~l 0 2 2[] 2} 

The minimum is obtained for Kk = bk, and Rt is the solution to 

(12) min IllXAt - bi I2 + A2 l 1 } 

which is a discrete regularization problem in standard form and with the unique 
solution given by 

(13a) =FYAfs 

where we have defined F = diag(Ji) E 1Rtxt with diagonal elements 
2 

For more details about discrete standard-form regularization, cf., e.g., [4]. No- 
tice that all parts of the solution x are determined from (10) and (11). If 
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the matrix (c) does not have full rank, then there will also be a nonestimable 
(arbitrary) part of the solution. 

The solution x. to (3), as a function of A, can thus be written as 

(14) xZ X b ? 

-XtE rAZs b+ XJZJ +XkZk b+X/Zi b. 

In particular, if q = n then k + / = 0, so that the last two terms in ( 14) vanish. 
In general, we have x, --? x0 = X+ ZTb for A --? 0. Note that the matrix 

XX+ZT is not a weighted pseudoinverse of A as defined by Elden [2]. 

3. SOME PROPERTIES OF THE REGULARIZED SOLUTION 

We shall now describe some of the nice features of the regularized solution 
x to (3). First of all, we see that if A has any small (io, reflecting the ill- 
conditioning of A, then the norm of the unregularized solution x0 = XI+ZTb 
may be very large because of the division by these small ai. For the same 
reason, x0 is very sensitive to perturbations of b. Consider now the first term 
in the expression (14) for the regularized solution x : 

+ T r q2 z Tb 
XtFA iA 2 +E 2 6Xi 

This is the only term where small ai occur. We immediately see from this 
expression that by choosing a suitable regularization parameter A somewhere 
between ar and ax, we are able to 'filter out' the contributions to x. corre- 
sponding to the small vi via the matrix F.. In this way, we can use A to control 
the norm and the sensitivity of x. at the expense of neglecting a (small) part of 
the information in the right-hand side b. This is, in fact, completely analogous 
to regularization of least squares problems [4]. 

Next, we prove that the regularized problem (3) is indeed better conditioned 
than the original problem (1). For simplicity, we restrict the perturbations to 
the right-hand side. 

Theorem 2. Let the perturbed right-hand side be b = b + e, let i. denote the 
corresponding perturbed solution, and let x0 and io denote the solutions for 
A=O. If ar<A< a1, then 

(15) Ix) - kl < i XIheK(X)K(Z) jell 

(16) ?- ioll< Ki(X) K(Z) 11e 
llx0ll - ar 11bbllV 

Here, I = maxfa1, 1}, bA = AxA, bo = Axo, and K(X) and K(Z) are the 
condition numbers of X and Z, respectively. 
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Proof. The relations 11b.11 = IIAx.II < IIZ I 11111 IIX' _II I~xAI and HIx, - ill < 

EXIH max{ IIFY-X7l, 1 }lZH Ilell give 

HXl~ - A < K(X)||X|1 max{ IFX7 1, 1}IK(Z) 

It is straightforward to show that 

IFEA- II= maxtfi/ai} = maxfui/(u 2 +A2)} < 1/(2A), 

so that max{llFI7ll, 1} = 1/min{2A, 1}. Since 11z11 = max{ 11A I, 1} = 

maxf a1, 1 }, this yields (15). Equation (16) is derived analogously by using 
that I~x0 -xoll < ? XII 11X+11 IIZHI Ilell and that 111+11 = 

7r 

Remark. Theorem 2 shows that the condition number KS associated with (3) 
satisfies 

IIx, - kII (17) K =_ lim sup * < K(X)Kc(Z). 
I 11eII-0 + IXoA - min{2A , 1} 

The key point here is that Theorem 2 shows that it is always possible to choose 
A such that x. is much less sensitive to perturbations than x0. Thus, we can 
say that for appropriate regularization parameter A , (3) is better conditioned 
than (1). 

Another important property of introducing regularization in (3) is that it 
decreases the variance of the solution x., compared to the variance of the 
solution x0 to (1) without regularization. Since the variance-covariance matrix 
associated with U = Uu is V() = s ,it is easy to show that the variance- 
covariance matrix V(ir) associated with the regularized solution vector -xr is 

2 +2 
(18) V~~~~~~xr) = S (ALA 

We readily see that if A is chosen suitably, somewhere between Ur and a1, 
then the elements of this matrix are numerically much smaller than those of the 
variance-covariance matrix s (XA)2 corresponding to A = 0. 

In this discussion we have not considered the "smoothness" of x.. We felt 
that such an analysis can be performed in analogy with that in [5]. For exam- 
ple, we know that the null space of C, which is spanned by the columns of Xk 
and Xl, is always "smooth" (in the sense of few zero crossings) when C is a 
discrete approximation to a derivative operator-thus ensuring that the compo- 
nent XkZ b + X1ZZ b in x. (14) is also "smooth". However, we were not able 
to derive any results about the "smoothness" of the columns of the submatrices 
14 and X1. 

4. THE DISCRETE PICARD CONDITION 

Of course, the introduction of regularization in (3) changes the solution x. 
compared to the unregularized solution to (1). The purpose of this section is to 
investigate the difference between these solutions. In this connection, notice that 
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if A does not have full rank, then the solution to (1) is not unique: the general 
solution can always be written as the estimable part of the solution plus an 
arbitrary amount of the nonestimable part of the solution [12]. For A -? 0, the 
regularized solution x. converges to a member of this general solution (but not 
necessarily to the estimable part; we can only guarantee this if rank(A) = n). 
It is therefore correct to compare the regularized solution x, to the solution 
x0 = XX+ZTb obtained from (14) by setting A = 0. 

An analysis of the regularization error x0 - x. for general A, B, C, and 
b is probably not possible. Instead, we use the same technique as in [4, 6]: 
we assume a very simple (but still realistic) "model" of the right-hand side and 
determine the conditions under which the regularization error is guaranteed to 
be small. Our "model" here is 

(19) zTb= { a, i- 1,..r, >0. 

The parameter a controls the decay of the z Tb relative to the decay of the 
corresponding (i , in such a way that the z Tb decay faster to zero than the a( 
for a > 1 . A direct analysis of x0 - x. is very difficult, so we multiply by the 
well-conditioned matrix X- I and consider instead X- (x0 - xA) 

Theorem 3. Let x = XX+ZTb be defined as the solution xi ( 14) with A = 0, 
and let the right-hand side b satisfy (19). If a?r < 2< (a, then 

(20) <Xx ) ? F(/<) 1<2<3, 
Oil Vr-(Alu,) a> 3. 

Proof. We have 

|l X1(x0-x)|| = ||A-F A F Zs b2lZ l = l F(It-FA,)AZs bll 

<VFl(It - F;)Y;A+Z)boZ = VFmax{(1 - fi) } 
a- 2 2 2- la-i 2 Here, (1 - fJ)a1 = (a +A2) a1 = q0($(a), where we have defined 

a i 2 
q$(a) _ I/(a 2 + A2). It is easy to show the following: For 0 < a < 1: q(a) 
is decreasing, so that 

2 2 A2 ~~~~a-i a-i 
2 .217r 2 r 

for 1 < a < 3: 0(a) has its maximum at a 2 = A2(a - 1)/(3 - a), and 

A) (a ( 1)/(3 - ) + A2 3a 

3-e ac-1 I (a1)/2 a- 
2 3 3 - (a) A 

= 2 (Ja - 1)(a- 1)/2(3 - a)(3-a)/2 a- 1 < Aa-I 
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for a > 3: 0(?X) is increasing, so that 

2 0((T < A 0(?T = 2A2 Ta-1 2 a-3 < 
2+~ 

Now, let S0 denote I (6a) with the three identity matrices replaced by 0. Then 

VsZ bi = |I10X X011 < 111H11 11XA xO1 = J1HX xOI. 

From the definition (19) of b we also have Zsbl > ? = (X1 . Thus, 

1/H1Xlxo0 ? 1/s'_ . Together, these formulae lead to (20). E 

Not surprisingly, we see that in order to ensure a small upper bound for 
the regularization error, we must require that the coefficients Iz TbI decay to 
zero faster than the ai . We also see that the faster the decay, the better xt 
approximates xO. Following an idea in [6], we are then led to the following 
definition of the discrete Picard condition for the regularized Gauss-Markov 
problem (3): 

Definition 4. The discrete Picard condition (DPC). The right-hand side b in 
(3) satisfies the DPC if, for all numerically nonzero oi, the coefficients IzTTb 
in average decay to zero faster than the a(. 

If the underlying, unperturbed right-hand side in (3) does not satisfy the 
DPC, then there is no point in trying to solve (3) at all, because x. does not 
approximate the true solution xO for any value of A. If, on the other hand, 
the unperturbed right-hand side b satisfies the DPC, and if the given b = b + e 
(which is contaminated with errors) is not completely dominated by the errors 
e, then b actually satisfies the DPC for i < K, where K is determined by the 
magnitude and the statistical distribution of the errors. Hence, if we choose 
A ,KY then the effect of regularization is to dampen the contributions to X. 
corresponding to the small ai < A. In other words, we can regard the addition of 
regularization to the linear model as a means for producing a slightly perturbed 
model that is guaranteed to satisfy the DPC, thus ensuring that the regularized 
solution x. is a meaningful estimator. For more details, and how to implement 
a check for satisfaction of the DPC in practice, cf. [6]. 

As in any regularization problem, the practical question of choosing a suitable 
regularization parameter A is difficult to answer in general terms, essentially 
because the (restricted) singular values are not available [3, ??3 and 4]. In 
fact, no perfectly general algorithm or principle seems to exist, and often an 
interactive approach using plots of the solution x, the derivative Cx, and the 
residual vector r = Ax - b, as well as their norms, is the best approach. Recent 
results in connection with discrete regularization do, however, suggest a near 
relationship between such an intuitive interactive approach and the method of 
generalized cross-validation. The basic idea is to plot the solution norm versus 
the residual norm as a parametrized curve with A as the parameter, and this 
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curve will typically have a more or less distinct L-shaped corner at the optimal 
value of A. (See [4, ?5] and, in particular, [5, ?5] for more details.) 

In connection with the regularized Gauss-Markov problem (3), our analysis 
here has shown that the basic problem to solve is the discrete regularization 
problem ( 12). Therefore, we would ideally like to consider a plot of I I t I versus 

IIA Xt - bIIl; but these quantities are not readily available. However, it is easy 
to see that IICx I2 = 

2 + Iljl1H2 and (since B has full rank) 

IIB rI = IIB+(Ax - b) 12 = IIuHI2 = 11UI12 = 11u l12 + 1k'1-2; 

i.e., the curve of IICxII versus IIB+rII is merely a translation of the (IIIA t - 

bII, II-tII)-curve. Hence, the choice of A might as well be based on the plot of 
the (IIB+rII, IICxII)-curve, using exactly the same ideas as described in [4, 5]. 
In this connection, note that IIB+rII is easily computed via a QR factorization 
of B (which has to be computed anyway; cf. Step 1 in the next section). 

5. A NUMERICAL ALGORITHM 

In this section we describe an algorithm for computing the unique regularized 
solution x. to (3). It is easy to see that (3) can be reformulated as 

minm [C I ] [x]| subject to [A,B]I[] =b, 

which is a simple equality-constrained linear least squares problem. Algorithms 
such as those described in [8], especially the null-space method [8, Chapter 
20], can be applied directly to solve the above problem. However, as is also 
pointed out in [10] (which is in the setting of general Gauss-Markov linear 
models without regularization), such an approach does not treat x, u, A, B, 
and C separately and in turn cannot take advantage of any special structure 
of the problem. Even worse is the case when solutions are required for several 
different A, in which case one has to solve a new equality-constrained linear 
least squares problem from the beginning for each A. The following algorithm 
tries to take these aspects into account, and is inspired by the work of Paige 
[10, 11]. The first three steps of our algorithm can be considered as a way to 
transform the problem to a simpler form, only using the data matrices A, B, 
and C. When a new A is chosen, one only needs to restart the algorithm from 
Step 4. The algorithm requires that assumptions (4a) and (4b) be satisfied. 

Step 1. Make a QR decomposition of B, so that B = Q[B, where B1 E RPYxP 

is upper triangular and nonsingular. Let 

(21) Q [Ab ] [A1 b m - p [2 b2 Jr-p 
Step 2. Make the following decomposition of A2: 

A2U=[ 0, A22]m- P 

n-i i 
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so that U is orthogonal and A22 E R(m p)xi is of full column rank i. Let 

(22) [] U= [ C ] and U'x=[ i] 
n-i i 

Then [jI I] is of full column rank. 

Step 3 (including consistency check). Make a QR decomposition of A22, so 
that A22 = Q1 [A22 ], where A22 E 1R'x> is upper triangular and nonsingular, 
and let [b(I)] withb(EIi 

2 
2 

Then the regularized general Gauss-Markov linear model is consistent only if 
b2) = 0. In this case, 

(23) x2 = A22 b2 

After some manipulation, we obtain the following ordinary least squares prob- 
lem, which only involves the component xl: 

(24) min 1B-A ] B (b A 2X2)1 

Step 4. The observation here is that we do not need to explicitly compute the 
matrix products involving B1 in order to solve the above problem, and this 
enhances the numerical stability of the algorithm. In fact, (24) is equivalent to 
the "standard" problem described in [1 1] with 

Y=[b A2X21 C=[|CI] and I= [o 2j 

We only need to choose orthogonal P and Q such that 

-T 
-I 0 

Q [C y B] 0 1 0 

LO O PJ 
(25) -R T RI r R12- n -i 

I ~~~~~TI 

0O 0 0 0 R21 

n-i 1 n-i 1 

where R, R1, and R2 are upper triangular and nonsingular. Now, if we let 

P TU = V= 1 

V2 p+q-(n-i)-1 
then x1 can be obtained by solving the following nonsingular upper triangular 
linear system: 

(26) detils see [1 ] 
For details, see [I I].- 
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Step 5. The unique solution is given by 

(27) x=U [xi] 

We now give more details about the factorization of (25). Since B is block 
diagonal, we can exploit this in the reduction step. In order to illustrate the 
situation, we give below a low-dimensional example with p = q = n - i + 1 
= 3. We first use a QR decomposition to transform [AC1, )AC2x2] to upper 
triangular form. Since the first block of B is an identity matrix, the effect of 
this transformation can be compensated by multiplying u by the orthogonal 
matrix, so that at the initial stage we have 

~~~~~~~ -x 
([C, fl, B) = X X X , X X X . 

X X X X X 

We can now reduce the leftmost matrix [C, y] to triangular form, while main- 
taining the triangular form of the rightmost matrix B, by a sequence of left and 
right Givens transformations. Figure 1 below illustrates how to eliminate the 
first column of the lower part of the first matrix. The same procedure can be 
continued in a similar way until we obtain the decomposition in (25). Through- 
out, -* shows the two rows or columns involved in the Givens transformation, 
and 0 indicates the element being annihilated. 

-4Q> X >(X >( 

Uxxxl~xx 1 FxxFIGUREx1 

Th fis stp in reucn telfmsmarx to tragua for whl xanan 

in x X Xtigl X f t X Xt m X X x LO x x] LX 'x] L xJX L? x x 

Xx X1 X x X X1 X x X1 [X x X X X1 

L x xJ L X X XX L X Xl L? X xIx 
X X X X X X XFIGURE 1 

Th fis stp in reucn th etotmti otinglrfr hl anan 

ing sthep t iangua freducin the rightmost matrixtorinuafmwhlmiti- 
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